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It is shown that the fundamental features of both thermal instabilities and the 
corresponding nonlinear convection in rapidly rotating spherical systems (in the 
range of the Taylor number lo9 < T < 10l2) are determined by the fluid properties 
characterized by the size of the Prandtl number. Coefficients of the asymptotic power 
law for the onset of convection at large Taylor number are estimated in the range of 
the Prandtl number 0.1 < Pr < 100. For fluids of moderately small Prandtl number, 
a new type of convective instability in the form of prograde spiralling drifting 
columnar rolls is discovered. The linear columnar rolls extend spirally from near 
latitude 60" to the equatorial region, and each spans azimuthally approximately five 
wavelengths with the inclination angle between a spirally elongated roll and the 
radial direction exceeding 45". As a consequence, the radial lengthscale of the linear 
roll becomes comparable with the azimuthal lengthscale. A particularly significant 
finding is the connection between the new instability and the predominantly 
axisymmetric convection. Though non-axisymmetric motions are preferred at the 
onset of convection, the nonlinear convection (at the Rayleigh number of the order 
of (R-R,) /R,  = O(O.l))  bifurcating supercritically from the spiralling mode is 
primarily dominated by the component of the axisymmetric zonal flow, which 
contains nearly 90% of the total kinetic energy. For fluids of moderately large 
Prandtl numbers, thermal instabilities a t  the onset of convection are concentrated in 
a cylindrical annulus coaxial with the axis of rotation ; the position of the convection 
cylinder is strongly dependent on the size of the Prandtl number. The associated 
nonlinear convection consists of predominantly non-axisymmetric columnar rolls 
together with a superimposed weak mean flow that contains less than 10% of the 
total kinetic energy a t  (R-R,) /R,  = O(O.l). A double-layer structure of the 
temperature field (with respect to the basic state) forms as a result of strong 
nonlinear interactions between the nonlinear flow and the temperature field. It is also 
demonstrated that the aspect ratio of the spherical shell does not substantially 
influence the fundamental properties of convection. 

1. Introduction 
I n  rotating spherical fluid systems, axisymmetric zonal flows showing differential 

rotation, i.e. deviating from a state of a rigid-body rotation, are encountered in many 
geophysical and astrophysical phenomena. Much of the interest in the previous work 
(e.g. Busse 1970b; Gilman 1977; Hart, Glatzmaier and Toomre 1986) on nonlinear 
spherical convection stems from the desire to provide an explanation for differential 
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rotation, such as the solar differential rotation with faster flows in the equatorial 
region. Differential rotation within the fluid core of the earth and the solar 
convection zone certainly play a major role in generating the toroidal component of 
their respective magnetic fields (Moffatt 1978; Glatzmaier 1983). One of the most 
spectacular manifestations of the differential rotation in nature is probably the zonal 
jet flows exhibited by the atmospheres of the major planets. Even more striking is 
the fact that the zonal jets are virtually constant in both strength and profile, and 
are highly equatorially symmetric (Ingersoll et al. 1981). Differential rotation is likely 
to be most easily generated through the nonlinear interaction of fluctuating 
convection eddies with the Reynolds strcss in rapidly rotating spherical fluid bodies. 
The key element involved in generating differential rotation is associated with the 
phase shift of convection rolls which is emphasizccl in the models of the mean zonal 
flows of the major planets (Busse 1976; 1983). 

Emphasis throughout this paper is on demonstrating that the combined effects of 
rotation, spherical curvature and the Prandtl number can create a circumstance in 
which even weakly nonlinear processcs can produce an important consequence : 
nonlinear interactions of the convection rolls are capable of generating a flow 
dominated by the differential rotation. In  contrast to  the earlier numerical studies, 
focus in this paper is on linear and nonlinear solutions in the parameter region of 
large Taylor number where the solutions display asymptotic behaviours on the 
dependence of the Taylor number. Consequently, an extrapolation of our model to 
rapidly rotating realistic systems becomes feasible. An attempt is also made to show 
the behaviour of the linear problem a t  an asymptotically large Taylor number in the 
hope of providing clues leading to an improvement of the existing analytical linear 
theories. 

In  a rapidly rotating spherical system, we expect that velocity deviation from the 
state of the Proudman-Taylor (PT) two-dimensional condition at the onset of 
convection would be quite small except in the vicinity of the outer spherical 
boundary. To illustrate the physical mechanism of the differential rotation 
generation and to give an insight into the qualitative behaviour of how and why 
columnar rolls can play a central part in this generation, we assume that the velocity 
of small-amplitude convection in cylindrical coordinates, (s, $, z ) ,  has components, 

where T is the Taylor number (see §2),  and p is the deviation of pressure from 
hydrostatic state in a drifting frame 

p = A sin (@)sin m($-f(<)), 

and 6 = B(s-s,)/d is the radial distance from the centre of a convection roll scaled 
by the thickness of the cylindrical convective layer. It is of course oversimplified, but 
it contains the basic elements of a realistic flow needed for the purpose of illustration. 
The spiralling properties of the columnar rolls are described by the phase function, 
f(6), which is primarily associated with the curvature of the boundary and with the 
value of the Prandtl number as we will discuss further. We will refer to the flow 
characterized by af(<)/a< -4 1 as normal columnar convection (rolls), which was 
predicted by the theories of Roberts (1968) and Busse ( 1 9 7 0 ~ ) ;  the convection with 
t..(<)/a< 2 O(1) will be referred to as spiralling columnar convection (rolls). Taking 
the average of the azimuthal component of the momentum equation (see $2, 
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equation (2)) over a cylindrical surface, and utilizing the drifting properties of finite- 
amplitude convection (Zhang & Busse 1987) and the equation of continuity, an 
equation for the differential rotation can be obtained : 

where [ ] represents the integral over a cylindrical surface and the differential rotation 
is denoted by U+ = [ u ~ ] .  Taking into account that  the s-derivative is much larger 
than the z-derivative, a/sas 9 1, it yields 

The relationship between 
rotation is thus given by 

the distortion of the columnar rolls and the differential 

where aj'( [)/a[ is approximately proportional to  the inclination angle, qi, between a 
stretched convection roll and the radial direction. Several important nonlinear 
aspects of the problem are capturcd by this simple illustrative case. It is evident that  
the Coriolis force cannot sustain the non-vanishing axisymmetric flow U+(s). An 
equilibrium state is achieved by balancing the Reynolds stress with the viscous forces 
of the differential rotation. The strength of the differential rotation is approximately 
proportional to  the inclination angle, T~ - df(g)/a[, of a columnar roll. If the phase 
function f([) is indepcndent of radial coordinate 5, that is, af([)/a[ = 0, the 
differential rotation cannot be maintained by the Reynolds stress. With a substantial 
tilt of convection rolls, qi > 45", a large-amplitudc differential rotation of the order 
of U+ = O(u,u#) can be generated through nonlinear interactions between the 
spiralling rolls. The direction of the differential rotation is determined by the sign of 
af([)/a[. Provided that the convection roll spirals progradely, df([)/a[ > 0, U+ will be 
predominantly eastward in lower latitudes. 

I n  rotating spherical convection systems, it is the fluid properties characterized by 
the Prandtl number that determine the fundamental features of both thermal 
instabilities and the corresponding nonlinear convection. Special attention will thus 
be given to the Prandtl-number-dependence of the problem, which has received very 
little attention. We shall present the linear and nonlinear results in rotating spherical 
fluid shells with the parameters in the ranges 

0(10*) d T d  0(1Ol2), O(O.l) d Pr d 100 

and 0 d (R-R,) < 2R,, where R, represents the critical Rayleigh number required 
for the onset of convection, and T is the Taylor number associated with the rate of 
rotation of the system. Attcntion is mainly focused on the case of the radius ratio of 
the spherical shell a t  rJr0 = 7 = 0.4, but the influences of varying q on the pattern 
of convection will also be discussed. Complicated nonlinear solutions bifurcating 
supercritically from the spiralling roll instability support the simple and physically 
illustrative ideas developed in (1). The relationship between the spiralling of 
convection rolls and the corresponding nonlinear properties of the flow will be 
particularly emphasized. Though the various applications of the results will not be 
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emphasized, the new form of instability and its finite-amplitude properties will 
certainly shed light on a broad class of geophysical and astrophysical problems in 
which the spherical systems are characterized by moderate Prandtl numbers and are 
strongly influenced by rotation. 

In what follows we first present the mathematical formulation of the problem in 
$2. In  $3 we discuss the instability criteria for the onset of convection at 
asymptotically large Taylor numbers as a function of the Prandtl number. In  $4, the 
structure of linear convection is illustrated and the physical reason for the occurrence 
of spiralling columnar convection is discussed. Nonlinear properties of convection are 
shown in $5 .  The paper closes with a brief discussion of the main features of our 
analysis and concluding remarks. 

2. Mathematical formulation of the problem 
Consider a homogeneous fluid spherical shell of constant thermal diffusivity K ,  fluid 

thermal expansion coefficient a and viscosity v that is rotating uniformly with a 
constant angular velocity 52 in the presence of its own gravitational field 

g = y r ,  

and in the absence of external forces. As the qualitative features of convection may 
not be critically influenced by the choice of the reference state (Chandrasekhar 1961), 
we have adopted the traditional model (Roberts 1968; Busse 1970a;  Soward 1977) 
in which the basic temperature gradient, 

VT,= -,8r 

is produced by a uniform distribution of heat sources. 
Using the thickness of the fluid shell, d = ro - ri, as lengthscale, the viscous diffusion 

time, d 2 / v ,  as scale of time, and ,8d2 as scale of temperature fluctuation of the system, 
respectively, the Navier-Stokes equation of motion for the velocity, u, the heat 
equation for the temperature deviation, 0, from the purely conductive state, T,, can 
be written as 

( :+u-V)u+rk x u = - V p + R r 0 + V 2 u ,  (2) 

v.u = 0, (3) 

k z - P r % ) 8 + r - u  = P r u - V e ,  (4) 

where k is an unit vector parallel to  the axis of rotation, and u is the three- 
dimensional velocity field, (us, u+ uz), in cylindrical coordinates, and, (ur, uo, u ~ ) ,  in 
spherical polar coordinates. The term V p  represents the force due to the pressure 
gradient. The non-dimensional parameters in the above equations are the Rayleigh 
number R,  the Prandtl number Pr and the Taylor number T ,  defined as 

In  the frame of the Boussinesq approximation, the velocity field can be written as 
a sum of poloidal and toroidal vectors 

u = V x V x rv+W x rw. 



Spiralling columnar convection 539 

Making use of this expression and applying r -  W x and r .  V x V x onto (2), we can 
derive the three independent governing non-dimensional scalar equations, 

[ ( , - ~ ) L 2 + ~ $ ] V 2 v + ~ Q w - R L 2 @  = -r .V xV x ( u ' v u ) ,  

[ ( V - $ ) L 2 + ~ & ] w - - r Q v  = r.V x (u.Vu),  

(5) 

In spherical polar coordinates ( r ,  0, $) with polar axis in the direction of rotation k,  
the differential operators, L ,  and Q ,  are defined as 

a a  L - - r2V2+-r2-  
2 -  ar ar' 

Q = k - V - + ( L , k . V + k . V L , ) .  

Equations (5)-(7) must be solved subject to certain conditions on the spherical 
bounding surfaces. The assumptions of impenetrable, perfectly thermally conducting 
and stress-free boundaries impose the following boundary conditions a t  the inner and 
outer bounding spherical surfaces, 

a t  r, = q / ( l  -7) and ro = 1 / ( 1 - ~ ) .  The stress-free boundaries are assumed since the 
nature of the boundaries may have little influences on the leading-order solution in 
the regime of large Taylor number (Roberts 1965). The frame of reference in which 
the rigid-body rotation of fluid motions vanishes has been adopted. However, the 
transformation to the other frame of reference is possible after a nonlinear solution 
is obtained. Moreover, the same thermal boundary conditions are used in the 
nonlinear computation because of the small volume of the inner core (see discussions 
in Zhang & Busse 1989). 

With the employment of the Galerkin spectral method in our numerical analysis, 
the three variables of the equations are represented in terms of complete systems of 
functions with the radial functions satisfying the boundary conditions, 

0 = C 0,,,sinnx(r-ri) Yr(e,$)expiwt+c.c., 

v = C vzmnsinnn(r-rr,) Yr(O,$)expiwt+c.c., 

1 ,  m, n 

2, m. n 

w = rwzmncosnn(r-ri)  Yy(e,$)expiwt+c.c., 

where coefficients Olmn,vzmn and wlmn are complex and time independent, and C.C. 
denotes complex conjugate, which should be included in the expansions for nonlinear 
solutions and excluded for linear solutions. The system possesses an equatorial 
symmetry that allows separation of the solution of (5)-(7) into two distinct families. 
The first family selects the spherical harmonics with a symmetry : 

which we shall call the symmetric mode. The other family with the opposite 
symmetry with respect to the equator will be referred to as the antisymmetric mode. 

1 ,  m ,  n 

(ur,  u e ,  ~ $ 1  ( r ,  8, $1 = (Ur, -ug, ~ $ 1  ( r ,  n-8, $)> 

18 FLM 236 
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We shall consider the symmetric mode only for the reason that it represents the 
physically realized solution (Busse 1970a). 

3. Onset of thermal instabilities 
In determining the onset of convection, all the nonlinear terms in (5) - (7)  are 

neglected as the system deviates slightly from the state of rigid-body rotation. On 
marginal instability, the requirement that both the real and imaginary parts of the 
complex detcrminant of the equation matrix (resulting from the Galerkin procedures) 
vanish yields two real equations 

Gr(w, R, T,m, Pr)  = Gi(w, R, T, m, Pr)  = 0, 

for given values of azimuthal wavenumber m, Taylor number T and Prandtl number 
Pr.  Because of the Rossby wave-like character of the instability, w generally does not 
vanish. The equations G, and Gi can be solved for the values of w and R by an 
iteration scheme. The critical mode of instability corresponds to the smallest possible 
value of the Rayleigh number, R,, with respect to all possible values of azimuthal 
wavenumber and to all possible modes likely to be excited. The amount of 
computation involved in determining the critical mode of convection is enormous, 
particularly for high Taylor numbers. Our attention is confined to  the parameter 
ranges lo8 < T < 10l2 and O(O.l)  < Pr < 100.0. Approximate numerical solutions are 
obtained by truncating an infinite set of linear homogeneous complex equations with 
a triangular truncation scheme in which all coefficients with indices satisfying 

(Z-m)+2n > UV,+l (8) 
are neglected. The resolution of linear solutions described in this paper is sufficient 
for about 3% accuracy. Some examples of the numerical convergence of linear 
solutions are presented in table 1 .  To give an impression of the resolution, for 
instance, the highest degree, Z,, of the spherical harmonics YF (0 ,  $) included at  the 
truncation level Nt = 22 for T = m = 73 and Pr = 10 is Zh = 118. Moreover, the 
associated patterns of convection at  different levels of truncation display almost 
identical forms. 

We begin our discussions of the linear results with a brief discussion of several 
previous studies. A detailed discussion about the existing theories can be found, for 
example, in a comprehensive review article by Fearn, Roberts & Soward (1988). 
Theoretical treatments of the linear-instability problem in a full sphere a t  large T 
limit were carried out by Roberts (1968) and Busse (1970~) .  An important 
development of the linear theories has been made by Soward (1977) who extended 
the linear stability analysis to a weakly nonlinear regime to reveal the radial 
structure of convection columns. Moreover, by applying thc no-slip boundary 
conditions he was able to investigate effects of the Ekman suction into and out of 
spherical boundary layers, which may have controlling influences on large-scale 
azimuthal flows. Another important extension of the theories is concerned with the 
influences of magnetic ficlds on the thermal instability (Fearn 1979a, b ) ,  which will 
not be pursued here. 

The essential elements in all the earlier theoretical studies involve three different 
scales : the short azimuthal lengthscale of the convection rolls, ro T-i, the medium 
radial lengthscale, r,T-i, and the long lengthscale in the direction of the rotation 
axis, r,. Consequently, the mathematical problem of the linear convection is 
considerably simplified by assuming that the azimuthal derivative, a/+, dominates 
over the axial and the radial derivatives ; the complex linear problem associated with 
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Nt T 
12 1O'O 
13 1O'O 
14 10'O 
15 10" 
20 10'2 
21 10'2 
22 10l2 
23 10" 

Rc m 

7 . 0 5 ~  106 30 
7 . 0 6 ~  lV 30 
7.07 x lo6 30 
7 . 0 7 ~  106 30 

1 . 5 1 3 ~  108 73 
1 . 4 7 5 ~  108 73 
1 . 4 5 6 ~  106 73 
1.445~108 73 

W 

-99.8 
-98.9 
- 98.8 
- 98.8 

-4490.5 
-472.3 
- 458.4 
- 446.1 

TABLE 1 .  Examples of the convergence behaviour of the critical parameters at the onset of 
convection with increasing truncation parameter N, at Pr = 10 

partial differential equations is reduced to local stability analysis in connection with 
ordinary differential equations. Such a numerical system with a second-order 
differential equation describing the asymptotic dependence of the critical parameters, 
R,, m, and w, on the Taylor number T ,  

m, = C, Tl, 

was first derived by Roberts (1968), where the coefficients are a function of the 
Prandtl number. But the anti-symmetric mode of convection was considered. The 
physically realizable asymptotic relations with the correct equatorial symmetry were 
obtained by Busse (1970a). By taking the curvature effect of boundaries as a 
perturbation, he was able to obtain the critical coefficients at asymptotically large T 
given by the following analytic expressions 

R, = C, Ti,  w, = C, Ti 

C, = 0.8021 (-r Pr 
i + P r  ' 

C, = 0.5470 - 
(1 ?PI. 

(9) 

in which we have taken into account the different scale used in his analysis. 
The radial structure of convective instabilities left undetermined in the above 

analysis was partly resolved by the Soward's ( 1977) weakly nonlinear instability 
theory, where the source of difficulties for determining the radial structure in the 
linear theories of Roberts and Busse was also traced. As a higher approximation to 
Busse's theories, the finite change of the boundary curvature across the convection 
layer of the medium lengthscale, T-i, was taken into account in Soward's theory. It 
is interesting to note that the possibility that convection rolls may have a prograde 
phase shift is implicit in his results, in which the quantity B N %/a6 (equation 
(4.14b), Soward 1977), equivalent to a,f(6)/a[, is positive. Of particular interest in his 
results is the fact that the steady or Rossby wave-type convection solutions with the 
critical Rayleigh number close to the value determined by Busse (1970~)  do not 
exist. Consequently, the critical Rayleigh number for the onset of convection cannot 
be predicted on the basis of the Roberts-Busse local linear theories. 

The critical coefficients, C,, C, and C,, estimated from our numerical solutions up 
to the Taylor number T = 0(10"), and evaluated from (9)-(10), are displayed in 

18-2 
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FIQURE 

0.1 1 10 100 

Pr 
The critical coefficients plotted against the Prandtl num.. er. The dashed curves 

correspond to (9)-( 1 1 )  and the solid curves are obtained from numerical analysis. 

C T =  108 T =  109 T =  1010 T =  1011 T =  1012 

- w c / l n 1 3  0.043 0.044 0.046 0.045 0.044 
R J T L I ~  1.61 1.56 1.52 1.48 1.45 

m,/T”O 0.65 0.70 0.65 0.71 0.73 

TABLE 2. Examples of the convergence behaviour of the critical parameters at the onset of 
convection with increasing Taylor number 

figure 1.  Table 2 shows an example of the convergence behaviour of the dependence 
of the critical coefficients as a function of the Taylor number for Pr = 10. Several 
interesting points have emerged from the table and the instability curves. Evidently, 
the power-law dependence, R, - Tf, w, - Ti  and m, - Ti,  at the onset of convection 
is borne out a t  large T ;  the parameter region with the asymptotically large T 
behaviour is apparently reached by our numerical analysis with about 5 % accuracy. 
However, the critical Rayleigh number required for the instability of convection is 
much underestimated by (9), while the frequency of oscillation is much 
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overestimated, particularly for small Prandtl numbers. That the coefficient of the 
critical Rayleigh number R, significantly exceeds the value of the Robert-Busse local 
theory appears to support the suggestion made by Soward (1977). It is also of 
importance to note that the ratio of the numerical estimate to the theoretical value 
varies quite substantially as a function of Pr. While the critical wavenumber of the 
theories and of the numerical results is nearly the same for the Prandtl number 
Pr < 1 the difference increases sharply with increasing Prandtl number. It is also 
interesting to note that both the theories and the numerical results show a tendency 
of asymptotically large Pr dependence for Pr 2 10. 

Another key parameter in discussing wave phenomena is the group wave speed, 
defined as 

in which the sign of C, gives rise to the direction of propagation of wave energy. Our 
numerical results indicate that the wave energy propagates westward (C, < 0) when 
the Prandtl number Pr < 0(1), consistent with the existing theories, but the 
propagation of wave energy (C, > 0) becomes eastward when the Prandtl number 
Pr 2 O( 10). The critical Prandtl number a t  which the Rossby waves stop propagating 
energy (C, = 0) seems to be around Pr = 5.  This discrepancy is perhaps a result of the 
fact that the position of convection is strongly dependent on the Prandtl number (see 
figure 3). 

To search for the reason for the discrepancy between our analysis and the theories, 
it is natural first to test the assumption of the theories on the different scales of 
convection rolls. The question of whether or not the radial scale of the columnar rolls 
is much larger than the azimuthal scale can be answered by comparing the variation 
of u as a function of s-si, where si = ri, a t  fixed values of z, and $,, with the variation 
of II as a function of so(+-+,) at fixed values of z, and so. Such comparisons at the 
equatorial plane are displayed in figure 2 for three different Prandtl numbers, namely 
Pr = 0.1, l .O and 10.0, in which the 8-dependence of u, and uc is denoted by solid lines 
and the s,($-$J-dependence is represented by dashed lines. As a result of the 
equatorial symmetry condition, flows are not allowed to cross the equatorial plane, 
that is, u, = 0 at the equatorial plane. At  a moderately small Prandtl number 
Pr = 0.1 (figure 2 a ) ,  the amplitude of velocity peaks at about s-si = 0.35 and 
decreases apparently algebraically away from the peak. At the radial distance, 
s,-si x 0.35(8 x 37"), the radial wavelength, A,, measured between two successive 
peaks of u, or uc is about 0.18 which is eventually smaller than the azimuthal 
wavelength A, = 0.29. Apparently, the radial wavelength A, remains nearly constant, 
reflecting the fact that it may result from the spiralling of the rolls. At the second 
peak, 8,--si = 0.63, the azimuthal wavelength A ,  becomes nearly equal to 2A8. It 
appears that there are only two different scales for the convection: the short 
lengthscale of convection roll in both azimuthal and radial directions, and the long 
lengthscale in the direction of rotation axis, 

As Pr is increased 
(figures 2 b, 2c)  : 

to Pr 2 1.0, however, three different scales start to emerge 

a a a  
a+ as aZ ->-+---. 
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From the condition V - u  = 0, which gives rise to 

us 43 

u4 Am 
-%- ,  
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it  is expected that the dependence of the scales on the Prandtl number should also 
be reflected by the typical ratio of the radial and the azimuthal components of 
velocity, us/up. For Pr = 0.1, the amplitudes of u, and ud is comparable with the 
typical value of us/u4 slightly less than 1.  As Pr is increased (see figure 2), us/u4 
increases rapidly in response to the changing of the scales of the roll. I n  order to keep 
the relatively longer radial scale, the amplitude of u, needs to greatly exceed that of 
ud. Another important feature in figure 2 is the position of the concentration of 
convection which also shows a strong dependence on the Prandtl number. In  short, 
the discrepancy between our linear results and the earlier analyses is probably a 
consequence of an assumption of the theories : there exist three different scales of the 
convection roll regardless of the size of the Prandtl number. 

4. Structure of columnar convection 
It is the PT theorem in conjunction with the controlling influences exerted by 

boundary geometry that provide the key for understanding the structure of 
convection in rapidly rotating fluid systems. The PT theorem states that  a steady 
and slow motion in the absence of viscous and magnetic forces satisfies the following 
vorticity equation 

It follows that the flow satisfying (12), the so-called geostrophic flow, is therefore 
independent of the coordinate parallel to the axis of rotation, and the pressure 
performs as a stream function for the two-dimensional flow. However, the realization 
of a convective flow obeying the P T  theorem depends upon the geometry of the 
bounding surfaces of a fluid container on which 

u, + x(4  u, = 0, 

( k . V ) u  = 0. (12) 

must be satisfied, where x is associated with the geometry of the fluid container, 
assumed to be axisymmetric. In a rotating annulus with parallel top and bottom 
boundaries, x = 0, two-dimensional convection can be realized except in the thin 
Ekman layers. In a rotating annulus with constant inclined top and bottom 
boundaries, ax/& = 0, convection without violating the PT theorem cannot occur. 
The resulting convection is in the form of nearly two-dimensional rolls aligned 
parallel to  the axis of rotation, and the rolls drift in the azimuthal direction with 
phase speed proportional to the slope of the boundaries, x. With an addition of weak 
curvature on the boundaries, ax/as = E ,  where E is a small parameter, the phase of the 
convection roll shifts slightly in the azimuthal direction depending on the sign of e 
(Busse 1983). In a rotating spherical system, the effects of spherical boundary 
curvature described by 

together with the strong influences of the Coriolis force play a key role in causing a 
drastic distortion of convection rolls in the form of prograde spiral. 

A typical structure of the spiralling columnar convection is illustrated in figure 
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FIGURE 3. Displayed on the right-hand side are streamlines of the toroidal flow on the outer surface 
of the fluid shell. On the left-hand side of (a), (b) and (c) are contours of uI in a meridian plane, while 
contours of u, are shown in (d). The respective parameters are Pr = 0.1, Pr = 1, Pr  = 10 and 
Pr  = 100 for T = 10". It should be noted that the pattern as a whole drifts with a phase speed 
c = -w/m. 

3 (a)  for T = 10'l and Pr = 0.1. Displayed are streamlines for the toroidal component 
of velocity on the outer surface of the shell (on the right-hand side) and contours of 
the azimuthal component, u4, at a meridian cross-section (on the left-hand side). 
Other components, such as radial velocity display similar spiral structure and are 
therefore not shown here. Since the pattern of flows is presented in a frame of 
reference moving azimuthally with the pliase speed of the convection rolls, the profile 
appears steady. Fluid rising near a latitude 60° is convected down at substantially 
lower latitudes in the neighbourhood of the equator. At the same time, in attempting 
to satisfy the two-dimensional constraint, the variation of flows is minimized in 
the direction of z,  as clearly shown by the contours of u4. The elongated and pro- 
grade spiralling roll spans an azimuthal distance of about five wavelengths, 
while the inclination angle, s,, is about 50' if it is evaluated approximately by 
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FIGURE 4. -, EJE, at ( R - R , ) / R ,  z 0.1 and ---, the estimated spiralling angle plotted as a 

function of the Prandtl number. 

T~ = tan-' @+/A,) at .so/r, = 0.5. There are no clear centres of the vortices as flows move 
all the way from the region near the equator up to a latitude corresponding to the 
cylinder attached to the inner boundary equator. As the Prandtl number decreases 
further, the effects of the spiralling become even more pronounced: the elongated 
rolls, for example a t  Pr = 0.05, extend in the manner of prograde spiralling from near 
a latitude 60" all the way to the equator with a large inclination angle. One 
consequence of the spiralling is that  the difference between the scales of the 
azimuthal and radial direction become negligibly small, as is evident in the contours 
of u+. A second consequence, much more significantly, is that the spiralling causes a 
close correlation between different components of convection (s u, u$ dq5 + 0). 

The fundamental features of the flow structure, however, change markedly with 
increasing Prandtl number. This change is primarily demonstrated in two ways. 
Firstly, the magnitude of the spiralling angle decreases sharply with increasing 
Prandtl number. As Pr is increased from Pr = O(O.l) to asymptotically large values, 
the spiralling angle qi (figure 4, dashed curve) decreases accordingly from about 50" 
to 15'. This variation is also clearly illustrated in figure 3, where toroidal streamlines 
for three other Prandtl numbers, namely Pr = 1 , l O  and 100, are displayed. While the 
spiralling at unit Prandtl number is still substantial, it becomes insignificant in the 
case of Pr 2 O(lO), where viscous dissipations are dominant. It appears that  the 
changeover from a normal columnar roll without substantial distortion to  spiralling 
columnar convection is smooth and gradual. Radical changes of convection mode, 
however, occur when the angle qi approaches 45", which is indicative of the vanishing 
distinction between the radial and azimuthal scale of the roll. Another important 
feature is concerned with the position of convection concentration, characterized by 
the critical latitude at which a cylindrical convection annulus coaxial with the axis 
of rotation meets the outer surface. Again the critical co-latitude of convection 
is strongly dependent on Pr (see also figure 2) and shifts from about 8, = 35" for 
Pr = 1 to  approximately 8, = 45" for asymptotically large Prandtl numbers. Finally, 
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FIGURE 5. Contours of u, in a meridian plane at q5 = 0 shown for (a)  7 = 0.2, T = 5 x lo8, m = 10, 
( b )  7 = 0.4, T = 5 x log, m = 10, and for (c) for 7 = 0.6, T = log, m = 18 at PT = 0.1. The solid 
contours indicate northward motion and the dashed contours represent southward motion. 

it is worth remarking that the convection rolls observed experimentally (Carrigan & 
Busse 1983; Chamberlain & Carrigan 1986) with the Prandtl number Pr x 7 also 
display a weak but clearly noticeable feature of the spiralling. 

The combined effects of the strong Coriolis forces, the boundary of spherical 
geometry and weak viscous dissipations are responsible for the occurrence of the 
spiralling columnar convection. While the strong influences of rotation cause the 
preferred nearly two-dimensional columnar motions, the z-dimension of the column 
varies continuously as a function of the radial distance. The column of fluid is forced 
to change its x-dimension as it approaches or moves away from the axis of rotation. 
That the radial flow must vanish on the outer spherical boundary therefore 
eventually controls the form of convection ; the induced vorticity arising from the 
z-dimension change of columnar fluid gives rise to the Rossby wave character of 
convection. It is important to note that the phase speed of the Rossby-type wave is 
approximately proportional to the inclination of the boundary, and thus increases 
rapidly, ax/& %- 1, in the case of spherical geometry as the column of fluid moves 
toward equator. Consequently, the columnar convection roll in a spherical container 
is forced to spiral progradely. If the viscous dissipations, measured by the size of the 
Prandtl number, are not large enough to break it up, it can extend spirally from 
middle latitudes to the equatorial region and elongate enormously in the azimuthal 
direction. But the shorter radial scale associated with the spiralling is likely to 
enhance the thermal diffusion without promoting the action of convection. This may 
provide an explanation of why the critical Rayleigh number R, is much higher in 
comparison with the prediction on the basis of the normal columnar roll. 

Influences of the inner core on the spiralling mode are only secondary compared 
to the effects produced by the Prandtl number. We have carried out the calculation 
on solutions with different parameters r ]  in an effort to understand the key 
mechanism of the spiralling columnar convection. Recalling that the problem is 
scaled by the thickness of the shell, we would expect the value of the critical 
azimuthal wavenumber to be larger for the thinner shell, and smaller for the thicker 
shell. Figure 5 depicts contours of u, a t  r ]  = 0.2,0.4 and 0.6 illustrating the influences 
of different aspect ratios of the shell on the spiralling properties of the rolls. When 
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the inner core radius is less than O.b,, the convection rolls extend spirally from about 
60" latitude to lower latitudes and, apparently, the pattern of convection at 7 = 0.2 
is almost identical to that at 7 = 0.4. For 7 = 0.6 with m, = 18, the highest latitude 
reached by the convection corresponds to the latitude a t  which the cylinder 
tangential to the inner boundary equator cuts the outer spherical surface (see also 
Busse & Coung 1977). Since it is a combination of the vastly different phase speed a t  
different latitudes and the effects of lower Prandtl number that markedly distorts the 
normal convection roll, this distortion will certainly diminish as ~ ( s )  approaches its 
asymptotic value in the equatorial region for the limit of a thin spherical shell. 

There are no indications of the fundamental change of the roll structure (figure 2 )  
with a further increase of Taylor number. As T increases, though, the lowest latitude 
that convection can reach becomes higher, owing largely to the larger dissipation of 
the narrower rolls associated with a larger critical wavenumber. It is also expected 
that the radial extent of the roll is likely to decrease toward zero as T becomes 
infinitely large at fixed Pr.  However, the basic features such as inclination angle, vi, 
and the azimuthal extent of a spiralling roll in terms of the azimuthal wavelength 
remain unchanged. It seems highly unlikely that these main features will be changed 
at even higher Taylor numbers. 

5. Finite-amplitude properties of spiralling columnar convection 
To appreciate that the fluid properties characterized by the Prandtl number play 

a critical roll in the problem of rotating spherical convection, and to capture the 
fundamental physical processes associated with the spiralling rolls, further 
calculation into the nonlinear regime is necessary. This requires the inclusion of all 
the nonlinear terms neglected in the calculation for the onset of convection, and is 
a formidable task at such high Taylor numbers owing largely to the rapidly 
increasing demand on computer hardware. It is for this reason that the range of the 
parameters which can be investigated is severely limited. However, from the linear 
results described, we anticipate that the corresponding finite-amplitude solutions 
depend smoothly on the parameters of the problem. Our attention has therefore been 
restricted to the cases of T = O( lolo) with Pr = 0.1,1, 10 and 100. Because the modes 
associated with the higher harmonics of m 2 2m, require much larger R in order to 
be excited and the nonlinear transfer into these higher harmonics is very limited 
owing to the higher dissipation of large wavenumbers, the higher harmonics related 
to the azimuthal wavenumber m 2 2m, (which are, for example, m 2 32 for Pr = 1.0) 
are neglected for the range of the Rayleigh number R < 2R, in our nonlinear 
calculation. By choosing the parameter of truncation Nt = 12, a t  which the 
corresponding linear solutions demonstrate satisfactory accuracy (see table l),  fairly 
accurate finite-amplitude solutions can be obtained for the mildly supercritical 
Rayleigh number. 

General characteristics of finite-amplitude convection can be described by the 
global properties of a flow such as the kinetic energy density of different components 
of velocity 

B, = ((v x ra ) z ) ,  8, = <(v x rtij)2), 

E, = ((V x v x my), 8, = ((V x v x rv)2), 
(13) 

(14) 

where the over bar indicates the axisymmetric components of flow and the tilde 
denotes the non-axisymmetric components. The symbol ( ) represents the average 
over the spherical fluid shell. Because of the drifting property of finite-amplitude 
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FIGURE 7. Contours of the different rotation U,+, in a meridian plane are shown at four different 
Prandtl numbers, namely Pr = (a )  0.1, ( b )  1, (c) 10 and (d )  100, for (R-R, ) /R,  x 0.1. -, 
eastward motion, ---, westward motion and the contour interval is constant. 

solutions, not only the axisymmetric components but also the average non- 
axisymmetric quantities are independent of time. It is convenient to characterize the 
basic features of a flow by introducing the ratio of the kinetic energy of the mean 
zonal flow U+ to  the total energy E,, 

The dependence of this ratio on the Prandtl number is plotted in figure 4 (solid line) 
a t  a particular value of (R-R,) /R,  x 0.1 for T = O(lO'o). About 40 nonlinear 
solutions of the complete equations are obtained in the range 0 < (R -Re) < 2Rc for 
every Prandtl number. The energy spectrum for three different Prandtl numbers is 
displayed in figure 6 as a function of (R - R,)/R,.  The most remarkable feature is that 
the amplitude of the mean zonal flow shows again a strong dependence on the fluid 
properties characterized by the Prandtl number. It is quite striking that EJE,  varies 
from about 90 YO to much less than 1 %. As Pr increases from 0.1 to an asymptotically 
large value, the characteristic of the finite-amplitude convection changes accordingly 
from the nearly axisymmetric flow to the regular columnar rolls with very weak 
axisymmetric components. The finite amplitude convection bifurcating from the 
spiralling columnar mode is primarily dominated by the component of axisymmetric 
azimuthal flows a t  the supercriticality of the order of (R-R,) /R,  = 0(0.1), although 
non-axisymmetric motions are preferred at the onset of convection. For moderately 
large Prandtl numbers, by contrast, nonlinear interactions of the rolls are much less 
important, and the resulting finite-amplitude convection is primarily dominated by 
the non-axisymmetric components of flows. However, the kinetic energy related to 
the meridional circulation, Ev, is severely suppressed by the constraint of rotation 
irrespective of the Prandtl number, and is too small to be shown in figure 6. 

Further impressions of the finite-amplitude properties can be gained from the 
pattern of axisymmetric flows resulting from the nonlinearity. The profiles of the 
differential rotation for four different Prandtl numbers, namely, Pr = 0.1, 1.0, 10, 
100, are depicted in figure 7 a t  (R-R, ) /R,  = O(O.l). These profiles change very little 
in the range of the parameter (R-R,)  c 2R, considered in this paper. For moderate 
Prandtl numbers, the finite-amplitude convection is composed of the dominant 
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FIGURE 8. Contours the temperature field 0 at the equatorial plane for, (a )  (R-R, ) /R,  = 0.1 and 
( b )  (R-R , ) /R ,  = 0.3 for Pr = 10 and T = 10'O. 

differential rotation (figure 7 a )  with weakly superimposed drifting spiralling rolls 
(figure 3a). The strongest zonal shear apparently occurs at the maximum of the 
spiralling angle, about 45" latitude. A rcmarkable feature of the mean zonal flows for 
Pr < O(1) is the nearly z-independent structure. In the limit of small Prandtl 
numbers, the advection of temperature becomes unimportant in comparison with the 
advection of momentum. The value of the contour interval, A@,,  for the 
corresponding axisymmetric temperature in figure 7 (a )  is about 0.0013, which gives 
rise to the mean flow originated from the thermal wind mechanism, 

Tklut/i3z - Rr x QO, 

of the order of U i  z RAO,/Ti x 0.01. This is negligible in comparison with the 
amplitude of the zonal flow in figure 7 (a) .  However, the character of finite-amplitude 
convection with moderately large Pr differs in a fundamental way from that of lower 
Pr.  The nonlinear flow with moderately large Pr is primarily dominated by regular 
columnar rolls (figure 3c, 3d ) with a superimposed weak but strongly z-dependent 
mean flow (figure 7c, d ), as we may expect from the linear results. The corresponding 
differential rotation is primarily generated by the thermal wind mechanism. As a 
consequence of strong temperature advection, the spherically symmetric basic state 
is modified by a fairly large axisymmetric component of the temperature field, Om,,. 
In  fact, a two-layer structure of 0, as shown in figure 8, is formed as a result of the 
modulation. 

For the possible application of the nonlinear solutions to zonal flows observed on 
the top of the atmospheres of the major planets, t,he axisymmetric zonal velocity 
U,(90-0), and the axisymmetric heat flux, H =  -aOo(9O-O)/ar, on the outer 
spherical surface are shown as a function of latitude for four different Rayleigh 
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FIGURE 9. (a) The axisymmetric velocity component, U,, and ( b )  the azimuthally averaged heat 
flux, -a@,/ar shown as a function of latitude for the Rayleigh number (R-R,)/R, = 0.008, 0.065, 
0.133, 0.175, successively, at Pr = 0.1 and T = 5 x lo9 on the outer surface of the fluid shell. 

numbers in figure 9 ( a ,  b ) .  A comparison of figures 9 ( a )  and 9 ( b )  shows a surprising 
correlation between the latitudinal dependence of axisymmetric heat flux and the 
mean zonal flow. Both the profiles show the minimum at the equator. The outward 
mean heat flux peaks near 13" latitude while the zonal velocity reaches a maximum 
near 10". The equatorial minimum of zonal flows and heat flux can be explained as 
arising from the finite latitude a t  which the outer cylindrical surface of spiralling 
columns cuts the outer spherical surface. It is of some interest to  note that the 
feedback from the differential rotation to the spiralling columnar rolls appears to be 
small, as the structure of the non-axisymmetric components shows only a slight 
change from the onset of convection. 

The essential differences between finitc-amplitude solutions of different Prandtl 
numbers can be most easily explained in terms of the Reynolds stress that  is closely 
associated with the form of convection rolls. The huge axisymmetric zonal flows with 
a geostrophic character for moderate Prandtl numbers can be explained as being due 
almost entirely to nonlinear interactions of the spiralling rolls as discussed in $1.  Our 
nonlinear results strongly suggest that the geostrophic character of the mean flow, 
aU,/az % 0, is not because a geostrophic mode can be most easily excited in a rapidly 
rotting fluid system, but because it is generated by strong nonlinear interactions of 
the nearly two-dimensional spiralling columnar rolls. This argument is supported by 
the transition, with increasing Prandtl number, from the geostrophic-type to  the 
strongly z-dependent, which is clearly illustrated in figure 7 .  As can be inferred from 
( l ) ,  the amplitude of the mean zonal flow may exceed that of either the non- 
axisymmetric poloidal or toroidal component of the flow, provided that the degree 
of spiralling is large enough to  cause a close correlation between us and u, which 
results in a strong momentum advection and produces large Reynolds stresses. Such 
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nonlinear interactions between the spirally stretched rolls are, with little doubt, 
responsible for the generation of the huge axisymmetric zonal flow. As zonal shears 
arising from the differential rotation increase further a t  higher R, the corresponding 
distortion of the spiralling columnar rolls is highly likely to limit the growth of the 
amplitude of the zonal flow. It seems feasible that an elongated spiralling roll is split 
into several columnar rolls as required by Busse’s model of Jupiter’s mean zonal 
flows (1983). Instabilities associated with the strong zonal shear and the likely 
structure of more complicated flows can be investigated by stability analysis with 
respect to the nonlinear solution described. However, this type of investigation 
involving the higher bifurcation of nonlinear solutions is impossible at the large 
Taylor numbers dealt with in this paper. 

The finite-amplitude instability for weakly nonlinear convection has not been 
observed in our numerical analysis. It is, however, a common phenomenon in a 
system constrained externally by rotation that the bifurcation exhibits subcritical 
behaviour. Such subcritical instabilities were found in a rotating plane layer (Veronis 
1965) and in a rotating magnetohydrodynamic system (Soward 1974). In  order to  
have a subcritical bifurcation, nonlinear effects are usually able to provide a mean to 
offset the externally imposed constraint and to effectively relax parts of the 
constraint. Although the finite-amplitude effects for Pr < 1 are dramatically strong 
in terms of the amplitude of the generated mean flow, the nearly z-independent 
structure minimizes the controlling constraint imposed by rotation. A supercritical 
bifurcation with this type of nonlinear solution is therefore not surprising. It is 
important to note that strong zonal flows are suppressed in Soward’s model (1977) 
by the Ekman suction, which is absent in our model with stress-free boundaries. This 
may explain why the finite-amplitude instability, suggested by Soward (1977), has 
not been found in our analysis. For large Prandtl numbers, nonlinear interactions 
between different components of the velocity are too weak to  produce any 
substantial effects which may relax the constraint of rotation. 

6.  Concluding remarks 
A prominent feature of convection emerging from our results, in contrast with 

previous analysis, is the strong dependence of both small- and finite-amplitude 
convection on the size of the Prandtl number of a fluid. It is the combined influences 
of the Coriolis forces, the spherical boundary curvature and the effects of the Prandtl 
number that play a crucial role in determining the properties of convection in 
rotating spherical fluid systems. The most important finding of this paper is the novel 
relationship between the spiralling columnar instability and large-amplitude zonal 
flows. Explanations are proposed to account for a dominantly axisymmetric zonal 
flow in rapidly rotating spherical fluid systems which choose small-scale non- 
axisymmetric motions at  the onset of convection. 

Our numerical analysis leads to  a somewhat more complicated picture for the 
analytic approach to  the linear problem owing to  the fact that the form of linear 
solutions depends critically on the Prandtl number. The previous asymptotic linear 
theories are considerably simplified by the assumption of the domination of a/a$. 
This assumption appears most seriously violated for the fluids with moderately small 
Prandtl numbers. It is suggested that the important mathematical advantage 
associated with a shorter azimuthal scale cannot be taken for the general problem. 
On the other hand, the structure of linear convection can be resolved if a/as is 
retained in the analysis. 
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It has been a challenge to geophysical fluid dynamicists to find an interpretation 
of observed features such as the dominantly axisymmetric equatorial zonal jets 
exhibited by the atmospheres of giant planets in terms of basic fluid dynamical 
process. The central theoretical effort in most of the earlier studies of nonlinear 
convection in rotating spherical bodies was in connection with the generation of 
mean zonal flows. Lack of precise information about the interior properties makes it 
very difficult to integrate the hydrodynamic equations numerically to simulate 
realistic flows, even on the largest computers available. For this reason, our efforts 
have centred on simplified models which we believe contain the essential physics 
while being tractable numerically by following the sequence of bifurcation. Our 
preliminary findings should be regarded as important for the heuristic character of 
rotating convection in spherical systems, not for its application to  the detailed 
explanation of specific phenomena. Since the fluid of many systems like Jupiter is 
eventually characterized by lower Prandtl numbers, the finding of the relationship 
between the spiralling columnar mode and the equatorial zonal jets will certainly 
lead to a better understanding of the hydrodynamic processes taking place. It cannot 
be claimed a t  the present stage that the spiralling columnar convection is the 
mechanism which produces the equatorial zonal flows observed in the major planets. 
However, the combined effects of strong Coriolis forces, spherical boundary geometry 
and lower Prandtl numbers, as described in this paper, undoubtedly play an 
important part in the hydrodynamic processes which produce the zonal jets. 

A great deal can be learnt through studying the instability properties of the 
nonlinear solutions at larger Rayleigh numbers where the fast equatorial zonal flow 
is likely to  be saturated by a mechanism in the form of hydrodynamic instabilities. 
But the instability properties and higher bifurcations of the nonlinear solutions 
associated with the spiralling columnar convection can only be studied a t  relatively 
small Taylor numbers. 
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